
Antony Polukhin

Полухин Антон

P0889
Ultimate copy elisions

Motivation

Some code
struct T {

 T() noexcept; T(T&&) noexcept; ~T() noexcept;

 void do_something() noexcept;

};

static T produce() { T a; a.do_something(); return a; }

static T update(T b) { b.do_something(); return b; }

static T shrink(T c) { c.do_something(); return c; }

int caller() {

 T d = shrink(update(produce()));

} 3 / 50

Current result of compilation
caller():

 sub rsp, 24

 lea rdi, [rsp+14]

 call T::T()

 lea rdi, [rsp+14]

 call T::do_something()

 lea rdi, [rsp+14]

 call T::do_something()

 lea rsi, [rsp+14]

 lea rdi, [rsp+15]

 call T::T(T&&)

 lea rdi, [rsp+15] 4 / 50

 call T::do_something()

 lea rsi, [rsp+15]

 lea rdi, [rsp+13]

 call T::T(T&&)

 lea rdi, [rsp+15]

 call T::~T()

 lea rdi, [rsp+14]

 call T::~T()

 lea rdi, [rsp+13]

 call T::~T()

Current result of compilation
caller():

 call T::T() // T a

 call T::do_something() // a.do_something();

 // T& b = a; // copy elision worked well

 call T::do_something() // b.do_something();

 call T::T(T&&) // T c{std::move(b)};

 call T::do_something() // c.do_something();

 call T::T(T&&) // T d{std::move(c)};

 call T::~T() // ~c();

 call T::~T() // ~a(); /*~b()*/

 call T::~T() // ~d();

5 / 50

Current result of compilation
caller():

 call T::T() // T a

 call T::do_something() // a.do_something();

 // T& b = a; // copy elision worked well

 call T::do_something() // b.do_something();

 call T::T(T&&) // T c{std::move(b)};

 call T::do_something() // c.do_something();

 call T::T(T&&) // T d{std::move(c)};

 call T::~T() // ~c(); `c` isn't accessed after move construction of `d`←

 call T::~T() // ~a(); `a` isn't accessed after move construction of `c`←

 call T::~T() // ~d();

6 / 50

There's something strange

 In assembly there is a following pattern:

 Variable X is copy constructed from variable Y

 Variable Y is not accessed any more

 Variable Y is destroyed

7 / 50

There's something strange

 In assembly there is a following pattern:

 Variable X is copy constructed from variable Y

 Variable Y is not accessed any more

 Variable Y is destroyed

 Instead if copying and using the copy compiler could reuse the old object as if it was a
new one (do the copy elision) [*]

8 / 50

Better result is possible:
caller():

 call T::T() // T a

 call T::do_something() // a.do_something();

 call T::do_something() // ba.do_something();

 call T::T(T&&) // T c{std::move(b)};

 call T::do_something() // ca.do_something();

 call T::T(T&&) // T d{std::move(c)};

 call T::~T() // ~c();

 call T::~T() // ~a();

 call T::~T() // ~d();

9 / 50

Better result is almost 2 times shorter:
caller():

 call T::T() // T a

 call T::do_something() // a.do_something();

 call T::do_something() // a.do_something();

 call T::do_something() // a.do_something();

 call T::~T() // ~a();

10 / 50

The idea: Relaxed rules for CE

 Allow to reuse the old object as if it was a new one if the old object is not accessed
between a copy/move construction of it and its destruction.

11 / 50

Current result of compilation
caller():

 call T::T() // T a

 call T::do_something() // a.do_something();

 // T& b = a; // copy elision worked well

 call T::do_something() // b.do_something();

 call T::T(T&&) // T c{std::move(b)};

 call T::do_something() // c.do_something();

 call T::T(T&&) // T d{std::move(c)};

 call T::~T() // ~c();

 call T::~T() // ~a(); /*~b()*/

 call T::~T() // ~d();

12 / 50

Problems that P0889 addresses

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

14 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

15 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

 Compilers fail to inline the copy/move constructors and optimize the whole code to the
same point as the relaxed copy elision rules may allow

16 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

 Compilers fail to inline the copy/move constructors and optimize the whole code to the
same point as the relaxed copy elision rules may allow:

 Affects runtime performance and stack usage

 Affects binary sizes

17 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

 Compilers fail to inline the copy/move constructors and optimize the whole code to the
same point as the relaxed copy elision rules may allow:

 Affects runtime performance and stack usage

 Affects binary sizes

 Because compilers do not elide copy constructors users are forced to write std::move

18 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

 Compilers fail to inline the copy/move constructors and optimize the whole code to the
same point as the relaxed copy elision rules may allow:

 Affects runtime performance and stack usage

 Affects binary sizes

 Because compilers do not elide copy constructors users are forced to write std::move

 Rules for writing (or not writing) std::move are tricky

19 / 50

Problems that P0889 addresses

 Compilers are forced to inline constructors+destructors and optimize a lot of IR

 Affects compile times

 Compilers fail to inline the copy/move constructors and optimize the whole code to the
same point as the relaxed copy elision rules may allow:

 Affects runtime performance and stack usage

 Affects binary sizes

 Because compilers do not elide copy constructors users are forced to write std::move

 Rules for writing (or not writing) std::move are tricky

 Affects language usage simplicity and teach-ability

20 / 50

More examples?

Copy elisions through references

 return std::move(local_variable);

 auto& v = local_variable; return v;

 return path(__lhs) /= __rhs; // libstdc++/85671

 ???

22 / 50

Not only for function returns

 { T v; takes_by_copy(v); }

 { T v; takes_by_reference_and_copies_internally(v); }

 struct B { T a; B(const T& a): a(a) {} }; B b{T{}}; // CWG #1049

 http_builder()->get(“example.org”)->args(“foo=bar”)->run();

 ???

23 / 50

How far we should go?
 Copy elision is allowed for any object with automatic storage duration if source is not
accessed between a copy/move construction of it and its destruction.

 Copy elision is allowed for any non-volatile object with automatic storage duration if
source is not accessed between a copy/move construction of it and its destruction.

 Copy elision is allowed for any non-volatile object with automatic storage duration if
source is not accessed between a copy/move construction of it and its destruction and
source outlives target.

 Copy elision is allowed for any non-volatile object with automatic storage duration if
source is not accessed between a copy/move construction of it and its destruction and
source is destroyed immediately after target.

24 / 50

FAQ

[*] Does it break user code?

[*] Does it break user code?

 Yes

27 / 50

[*] Does it break user code?

 Yes, I'm 100% sure

28 / 50

[*] Does it break user code?

 Yes, I'm 100% sure

 Good news: it breaks only unportable code

 Code where generally-accepted constraint for a copy constructor is not satisfied:
"After the definition T u = v;, u is equal to v".

29 / 50

Why the code is unportable?

 Language and Library heavily rely on “After the definition T u = v;, u is equal to v”

 Ranges TS force that requirement

 Library implicitly requires objects after copy/assignment/move to be equal in
[container.requirements.general]

 Algorithms do not work well if that constraint is not satisfied

 Complexities are described as "At most [...] swaps" or "Approximately [...] swaps"

 Algorithms sometimes do not specify the order of copying/swapping

 [class.copy.elision] implicitly relies on that constraint

 [class.copy.elision] is not mandatory!

 Guaranteed copy elision implicitly relied on that constraint
30 / 50

Why the code is unportable?

 C++ Language and Library heavily rely on “After the definition T u = v;, u is equal to v”

 WG21 has been relying on that constraint for a long time and classes that violate that
constraint are already unportable across platforms/Standard versions.

31 / 50

Is it important?

Are those problems important for users?

 Runtime performance

 Binary sizes

 Compile times

 Language usage simplicity and teach-ability

33 / 50

Those problems are important for users!

 Runtime performance

 Binary sizes

 Compile times

 Language usage simplicity and teach-ability

 Here are only some EWG papers from 2018 mailings that are related to those problems:

 [[move_relocates]], [[likely]], trivial virtual destructors, zero-overhead exceptions,
[[no_unique_address]], Modules, down with typename …

 There's even more papers for LEWG that try to improve some of those

34 / 50

Is it possible to implement right now?

Is it possible to implement right now?

 Yes, but it would be hard.

 Anyway, this proposal does not require any of the optimizations from examples. The
proposal simply attempts to relax copy elision rules to allow those optimizations
someday.

36 / 50

Спасибо!
Thanks for listening!

Antony Polukhin
Developer in Yandex.Taxi

antoshkka@yandex-team.ru

antoshkka@gmail.com

https://github.com/apolukhin

https://stdcpp.ru/

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

