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Почувствуем себя компилятором...
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template<class T>
constexpr T foobarbuz(T n) noexcept {

  if (n <= T{1})
    return n;

  T i_current{0}, i_next{T(T{1} << ((std::bit_width(

     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

  do {

    i_current = i_next;

    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);

  return i_current;
}

Почувствуем себя компилятором...
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int main() {

    return foobarbuz(-4);
}

Почувствуем себя компилятором...
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template<class T>
constexpr T foobarbuz(T n) noexcept {

  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);

  return i_current;
}

Почувствуем себя компилятором...
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template<class T>
constexpr T isqrt(T n) noexcept {

  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);

  return i_current;
}

Почувствуем себя человеком...
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template<class T>
constexpr T isqrt(T n) noexcept {
  assert(n >= 0);
  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
  assert(i_next >= 0);
  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);
  assert(i_current >= 0);
  return i_current;
}

Почувствуем себя человеком...
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template<class T>
constexpr T isqrt(T n) noexcept {
  assert(n >= 0);
  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
  assert(i_next >= 0);
  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);
  assert(i_current >= 0);
  return i_current;
}

Почувствуем себя человеком...
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int main() {

    return isqrt(-4);
}

Да тут же бага!..
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template<class T>
constexpr T isqrt(T n) noexcept {
  assert(n >= 0);
  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
  assert(i_next >= 0);
  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);
  assert(i_current >= 0);
  return i_current;
}

Почувствуем себя человеком...
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template<class T>
constexpr T isqrt(T n) noexcept {
  assert(n >= 0);
  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
  assert(i_next >= 0);
  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);
  assert(i_current >= 0);
  return i_current;
}

Почувствуем себя человеком...
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template<class T>
constexpr T isqrt(T n) noexcept {
  contract_assert(n >= 0);
  if (n <= T{1})
    return n;
  T i_current{0}, i_next{T(T{1} << ((std::bit_width(
     std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
  contract_assert(i_next >= 0);
  do {
    i_current = i_next;
    i_next = T((i_current + n / i_current) >> 1);
  } while (i_next < i_current);
  contract_assert(i_current >= 0);
  return i_current;
}

Почувствуем себя человеком...
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int main() {

    return isqrt(-4);
}

Да тут же бага!..
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int main() {

    return isqrt(-4);  // Compiler warning/error
}

Да тут же бага!..
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int main() {

    return isqrt(-4);
}

Да тут же бага!..
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int isqrt(int) noexcept;

Итак, проблема...
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int isqrt(int) noexcept;

int main() {
    return isqrt(-4);
}

Итак, проблема...
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int isqrt(int) noexcept;

int main() {
    return isqrt(-4);  // ?????
}

Итак, проблема...
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int isqrt(int) noexcept pre(n >= 0);

int main() {
    return isqrt(-4);  // ?????
}

Итак, проблема...
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int isqrt(int) noexcept pre(n >= 0);

int main() {
    return isqrt(-4);  // ?????
}

Итак, проблема...
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int isqrt(int) noexcept pre(n >= 0);

int main() {
    return isqrt(-4);  // Warning/Error
}

Итак, проблема...
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int isqrt(int n) noexcept pre(n >= 0);

int main() {
    const auto x = isqrt(4);
    return isqrt(x);  // ???
}

Итак, проблема...
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int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
    const auto x = isqrt(4);
    return isqrt(x);  // ???
}

Итак, проблема...
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int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
    const auto x = isqrt(4);
    return isqrt(x);  // No warning/Error
}

Итак, проблема...
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int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
    const auto x = isqrt(4);
    return isqrt(x);  // No warning/Error
}

Итак, проблема...
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Как сделать себе больно с помощью 
assert?

* Написать в нём важную логику

* Side effects

* ODR-violation (для контрактов работает 
только вместе с предыдущим пунктом)
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Кастомизация
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void handle_contract_violation(const std::contracts::contract_violation& violation) noexcept {

    std::print("Contract {} violation. Trace:\n{}", violation.comment(), std::stacktrace::current());

}

Кастомизация
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Открытые вопросы

1 Виртуальные функции



Открытые вопросы

1 Виртуальные функции

2 Side effects & UB



Открытые вопросы

1 Виртуальные функции

2 Side effects & UB

3 Отключение части контрактов
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Reflection



Доступность приватных членов



Доступность приватных членов

! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками



Доступность приватных членов

! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками

Всё что видно в исходнике должно быть 
доступно рефлексии
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#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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constexpr unsigned char whl[] = {

#embed "ches.glsl" \

  prefix(0xEF, 0xBB, 0xBF, ) /* префикс для вставки, если ресурс не пустой */ \

  suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

  if_empty(0xBB, 0xBF, ) /* что вставить, если ресурс пустой */ \

  limit(1024*1024) /* максимальный размер для вставки */ \

  0

};

#embed
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C++26
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C++26
Сверхспособности
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Сверхспособности
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import Protobuf.Reflection;

Сверхспособности
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import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности
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import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности
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import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности
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import Protobuf.Reflection;
constexpr auto _ = []() {
    constexpr unsigned char proto[] = {
        #embed PROTO_FILE
    };

}();

Сверхспособности
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import Protobuf.Reflection;
constexpr auto _ = []() {
    constexpr unsigned char proto[] = {
        #embed PROTO_FILE
    };
    protobuf::reflection_generate_client(proto, exporting = DO_EXPORT);
}();

Сверхспособности
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// generate_protobuf_client.pp
import Protobuf.Reflection
constexpr auto _ = []() {
    constexpr unsigned char proto[] = {
        #embed PROTO_FILE
    };
    protobuf::reflection_generate_client(proto, exporting = DO_EXPORT);
}();

Сверхспособности
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Сверхспособности
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export module MyProject.Protobufs;

Сверхспособности
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export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

Сверхспособности
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export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"

Сверхспособности
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export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"
#include "generate_protobuf_client_server.pp"

Сверхспособности
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export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"
#include "generate_protobuf_client_server.pp"

#define PROTO_FILE "schemas/sample/hello2.pb"
#include "generate_protobuf_client_server.pp"

#define PROTO_FILE "schemas/sample/hi.pb"
#include "generate_protobuf_client.pp"

Сверхспособности
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… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];

C ...
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