
Antony Polukhin

Полухин Антон

C++26
Новости последних встреч ISO

РГ21 C++ 2

Содержание

– Contracts
– Reflection
– #embed
– Сверхспособности

С++

C++26
C++29

РГ21 C++ 3

Почувствуем себя компилятором...

РГ21 C++ 4

template<class T>
constexpr T foobarbuz(T n) noexcept {

 if (n <= T{1})
 return n;

 T i_current{0}, i_next{T(T{1} << ((std::bit_width(

 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

 do {

 i_current = i_next;

 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);

 return i_current;
}

Почувствуем себя компилятором...

РГ21 C++ 5

int main() {

 return foobarbuz(-4);
}

Почувствуем себя компилятором...

РГ21 C++ 6

template<class T>
constexpr T foobarbuz(T n) noexcept {

 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);

 return i_current;
}

Почувствуем себя компилятором...

РГ21 C++ 7

template<class T>
constexpr T isqrt(T n) noexcept {

 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};

 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);

 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 8

template<class T>
constexpr T isqrt(T n) noexcept {
 assert(n >= 0);
 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
 assert(i_next >= 0);
 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);
 assert(i_current >= 0);
 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 9

template<class T>
constexpr T isqrt(T n) noexcept {
 assert(n >= 0);
 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
 assert(i_next >= 0);
 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);
 assert(i_current >= 0);
 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 10

int main() {

 return isqrt(-4);
}

Да тут же бага!..

РГ21 C++ 11

template<class T>
constexpr T isqrt(T n) noexcept {
 assert(n >= 0);
 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
 assert(i_next >= 0);
 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);
 assert(i_current >= 0);
 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 12

template<class T>
constexpr T isqrt(T n) noexcept {
 assert(n >= 0);
 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
 assert(i_next >= 0);
 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);
 assert(i_current >= 0);
 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 13

template<class T>
constexpr T isqrt(T n) noexcept {
 contract_assert(n >= 0);
 if (n <= T{1})
 return n;
 T i_current{0}, i_next{T(T{1} << ((std::bit_width(
 std::make_unsigned_t<T>(T(n - 1))) + 1) >> 1))};
 contract_assert(i_next >= 0);
 do {
 i_current = i_next;
 i_next = T((i_current + n / i_current) >> 1);
 } while (i_next < i_current);
 contract_assert(i_current >= 0);
 return i_current;
}

Почувствуем себя человеком...

РГ21 C++ 14

int main() {

 return isqrt(-4);
}

Да тут же бага!..

РГ21 C++ 15

int main() {

 return isqrt(-4); // Compiler warning/error
}

Да тут же бага!..

РГ21 C++ 16

int main() {

 return isqrt(-4);
}

Да тут же бага!..

РГ21 C++ 17

int isqrt(int) noexcept;

Итак, проблема...

РГ21 C++ 18

int isqrt(int) noexcept;

int main() {
 return isqrt(-4);
}

Итак, проблема...

РГ21 C++ 19

int isqrt(int) noexcept;

int main() {
 return isqrt(-4); // ?????
}

Итак, проблема...

РГ21 C++ 20

int isqrt(int) noexcept pre(n >= 0);

int main() {
 return isqrt(-4); // ?????
}

Итак, проблема...

РГ21 C++ 21

int isqrt(int) noexcept pre(n >= 0);

int main() {
 return isqrt(-4); // ?????
}

Итак, проблема...

РГ21 C++ 22

int isqrt(int) noexcept pre(n >= 0);

int main() {
 return isqrt(-4); // Warning/Error
}

Итак, проблема...

РГ21 C++ 23

int isqrt(int n) noexcept pre(n >= 0);

int main() {
 const auto x = isqrt(4);
 return isqrt(x); // ???
}

Итак, проблема...

РГ21 C++ 24

int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
 const auto x = isqrt(4);
 return isqrt(x); // ???
}

Итак, проблема...

РГ21 C++ 25

int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
 const auto x = isqrt(4);
 return isqrt(x); // No warning/Error
}

Итак, проблема...

РГ21 C++ 26

int isqrt(int n) noexcept pre(n >= 0) post(r: r >= 0);

int main() {
 const auto x = isqrt(4);
 return isqrt(x); // No warning/Error
}

Итак, проблема...

Как сделать себе больно с помощью
assert?

Как сделать себе больно с помощью
assert?

* Написать в нём важную логику

Как сделать себе больно с помощью
assert?

* Написать в нём важную логику

* Side effects

Как сделать себе больно с помощью
assert?

* Написать в нём важную логику

* Side effects

* ODR-violation

Как сделать себе больно с помощью
assert?

* Написать в нём важную логику

* Side effects

* ODR-violation (для контрактов работает
только вместе с предыдущим пунктом)

РГ21 C++ 32

Кастомизация

РГ21 C++ 33

void handle_contract_violation(const std::contracts::contract_violation& violation) noexcept {

 std::print("Contract {} violation. Trace:\n{}", violation.comment(), std::stacktrace::current());

}

Кастомизация

Открытые вопросы

Открытые вопросы

1 Виртуальные функции

Открытые вопросы

1 Виртуальные функции

2 Side effects & UB

Открытые вопросы

1 Виртуальные функции

2 Side effects & UB

3 Отключение части контрактов

РГ21 C++ 38

Reflection

Доступность приватных членов

Доступность приватных членов

! Рефлексия — это замена для внешних
утилит, которые работают с C++
заголовками

Доступность приватных членов

! Рефлексия — это замена для внешних
утилит, которые работают с C++
заголовками

Всё что видно в исходнике должно быть
доступно рефлексии

РГ21 C++ 42

#embed

РГ21 C++ 43

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 44

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 45

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 46

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 47

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 48

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 49

constexpr unsigned char whl[] = {

#embed "ches.glsl" \

 prefix(0xEF, 0xBB, 0xBF,) /* префикс для вставки, если ресурс не пустой */ \

 suffix(,) /* суффикс для вставки, если ресурс не пустой */ \

 if_empty(0xBB, 0xBF,) /* что вставить, если ресурс пустой */ \

 limit(1024*1024) /* максимальный размер для вставки */ \

 0

};

#embed

РГ21 C++ 50

C++26

РГ21 C++ 51

C++26
Сверхспособности

РГ21 C++ 52

Сверхспособности

РГ21 C++ 53

import Protobuf.Reflection;

Сверхспособности

РГ21 C++ 54

import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности

РГ21 C++ 55

import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности

РГ21 C++ 56

import Protobuf.Reflection;
constexpr auto _ = []() {

}();

Сверхспособности

РГ21 C++ 57

import Protobuf.Reflection;
constexpr auto _ = []() {
 constexpr unsigned char proto[] = {
 #embed PROTO_FILE
 };

}();

Сверхспособности

РГ21 C++ 58

import Protobuf.Reflection;
constexpr auto _ = []() {
 constexpr unsigned char proto[] = {
 #embed PROTO_FILE
 };
 protobuf::reflection_generate_client(proto, exporting = DO_EXPORT);
}();

Сверхспособности

РГ21 C++ 59

// generate_protobuf_client.pp
import Protobuf.Reflection
constexpr auto _ = []() {
 constexpr unsigned char proto[] = {
 #embed PROTO_FILE
 };
 protobuf::reflection_generate_client(proto, exporting = DO_EXPORT);
}();

Сверхспособности

РГ21 C++ 60

Сверхспособности

РГ21 C++ 61

export module MyProject.Protobufs;

Сверхспособности

РГ21 C++ 62

export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

Сверхспособности

РГ21 C++ 63

export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"

Сверхспособности

РГ21 C++ 64

export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"
#include "generate_protobuf_client_server.pp"

Сверхспособности

РГ21 C++ 65

export module MyProject.Protobufs;
export import std;
#define DO_EXPORT true

#define PROTO_FILE "schemas/sample/hello.pb"
#include "generate_protobuf_client_server.pp"

#define PROTO_FILE "schemas/sample/hello2.pb"
#include "generate_protobuf_client_server.pp"

#define PROTO_FILE "schemas/sample/hi.pb"
#include "generate_protobuf_client.pp"

Сверхспособности

… а ещё

… а ещё

1 SIMD

… а ещё

1 SIMD

2 Executors

… а ещё

1 SIMD

2 Executors

3 Constexpr

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];

… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];

C ...

Спасибо

Полухин Антон
Эксперт-разработчик C++

antoshkka@yandex-team.ru

antoshkka@gmail.com

https://github.com/apolukhin

https://stdcpp.ru/

https://github.com/userver-framework

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/
https://github.com/userver-framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	вопрос/тема
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

