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struct sequence{};
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auto sample() {

    auto [x0, x1, x2] = sequence<3>{};

    assert(x0 = 0);

    assert(x1 = 1);

    assert(x2 = 2);
}

Tuple protocol
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auto sample2(auto tuple) {
    constexpr auto [...I] = sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

Tuple protocol
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auto sample2(auto tuple) {
    constexpr auto [...I] = sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

auto sample3(auto tuple) {
    int sum = 0;
    template for(constexpr std::size_t I : sequence<3>()) {
        sum += std::get<I>(tuple);
    }
    return sum;
}

Tuple protocol
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template<class T, T... Values>
struct tuple_size<integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
constexpr T get(integer_sequence<T, Values...>) noexcept;

Tuple protocol for std::integer_sequence
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auto sample2(auto tuple) {
    constexpr auto [...I] = std::make_index_sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

auto sample3(auto tuple) {
    int sum = 0;
    template for(constexpr std::size_t I: std::make_index_sequence<3>()) {
        sum += std::get<I>(tuple);
    }
    return sum;
}

Tuple protocol for std::integer_sequence
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Диагностика
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template <class T>
void CallMe(T x) {
    return sqrt(x);
}

Диагностические сообщения
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#include <boost/type_index/ctti_type_index.hpp>
#include <format>
template <class T>
void CallMe(T x) {
    static_assert (
        requires { sqrt(x); }
    );
    return sqrt(x);
}

Диагностические сообщения
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#include <boost/type_index/ctti_type_index.hpp>
#include <format>
template <class T>
void CallMe(T x) {
    static_assert (
        requires { sqrt(x); }, std::format(
            "Define sqrt() function for {0} in its namespace",
            boost::typeindex::ctti_type_index::type_id<T>().name()
        ).c_str()
    );
    return sqrt(x);
}

Диагностические сообщения
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template <class T, std::size_t Size /* ... */>
class FastPimpl {
private:
    template <std::size_t ActualSize /* ... */>
    static void Validate() noexcept {
        static_assert(
            Size >= ActualSize,
            "invalid Size: Size >= sizeof(T) failed"

        );
        // ...
    }

Пример из userver
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template <class T, std::size_t Size /* ... */>
class FastPimpl {
private:
    ~FastPimpl() {
        static_assert(
            Size >= sizeof(T), std::format(
            "’Size’ should be set to at least {}.", Size
            ).c_str()

        );
        // ...
    }

Пример из userver
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Дальнейшие улучшения

* P3652 Constexpr floating-point <charconv> 
functions
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std::optional<int> opt;
return *opt;  // С Hardening: SIGABORT, trap, std::terminate() ...

Что случится?



РГ21 C++ 27

std::optional<int> opt;
return *opt;

int isqrt(int n) noexcept
  pre(n >= 0)
  post(r: r >= 0)
;

Hardening & Contracts
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Дальнейшие улучшения контрактов

1 Виртуальные функции

2 Side effects & UB

3 Отключение части контрактов

4 Теги и более гранулярная настройка
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Reflection
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! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками



Доступность приватных членов

! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками

Всё что видно в исходнике должно быть 
доступно рефлексии
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consteval block



РГ21 C++ 38

#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  

  storage data;
};

consteval block
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#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  consteval {
    

  }
  storage data;
};

consteval block
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#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  consteval {
    std::meta::define_class(^storage,
                 {std::meta::data_member_spec(^Ts)...});
  }
  storage data;
};

consteval block
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Прочие баги
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#include <ranges>

std::vector<std::string> coll1{"Amsterdam", "Berlin", "Cologne", "LA"};

// Перемещаем длинные строки в обратном порядке в другой контейнер

auto large = [](const auto& s) { return s.size() > 5; };

auto sub = coll1 | std::views::filter(large)

               | std::views::reverse

               | std::views::as_rvalue

               | std::ranges::to<std::vector>();

P3725
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… ещё проблемы

1 UB в <type_traits>

2 basic_string::append/assign

3 uniform_int_distribution<uint8_t>

4 ...

5 … и ещё ~300 проблем



РГ21 C++ 49

С++26
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… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];

C ...
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