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template <std::size t N>
struct sequence{};




Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
: std::integral constant<std::size t, N>

{};
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Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
. std::integral constant<std::size t, N>
{};
template <std::size t I, std::size t N>
struct std::tuple element<I, sequence<N>> {
using type = std::size t;

}s
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Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
. std::integral constant<std::size t, N>
{};
template <std::size t I, std::size t N>
struct std::tuple element<I, sequence<N>> {
using type = std::size t;

¥

template<std::size t I, std::size t N>

constexpr std::size t get(sequence<N>) noexcept {
return I;

¥
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Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
: std::integral constant<std::size t, N>

{};

template <std::size t I, std::size t N>

struct std::tuple element<I, sequence<N>> {
using type = std::size t;

}s

template<std::size t I, std::size t N>

constexpr std::size t get(sequence<N>) noexcept {
return I;

¥
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Tuple protocol

auto sample() {
auto [x0, x1, x2] = sequence<3>{};
assert(x0 = 0);
assert(x1l = 1);

assert(x2 = 2);
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Tuple protocol

auto sample2(auto tuple) {
constexpr auto [...I] = sequence<3>{};
return (std::get<I>(tuple) + ...);
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Tuple protocol

auto sample2(auto tuple) {
constexpr auto [...I] = sequence<3>{};
return (std::get<I>(tuple) + ...);

¥

auto sample3(auto tuple) {
int sum = 0;
template for(constexpr std::size t I : sequence<3>()) {
sum += std::get<I>(tuple);
}

return sum;
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Tuple protocol for std::integer sequence

template<class T, T... Values>
struct tuple_size<integer sequence<T, Values...>>;

template<size t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>>;

template<size t I, class T, T... Values>
constexpr T get(integer sequence<T, Values...>) noexcept;
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Tuple protocol for std::integer sequence

auto sample2(auto tuple) {
constexpr auto [...I] = std::make_index_sequence<3>{};
return (std::get<I>(tuple) + ...);

¥

auto sample3(auto tuple) {
int sum = 0;
template for(constexpr std::size t I: std::make_index_sequence<3>()) {
sum += std::get<I>(tuple);
}

return sum;
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[InarHocTudeckue coooLueHus

template <class T>
void CallMe(T x) {
return sgrt(x);

¥
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[InarHocTnuecKkue cooowieHun

#include <boost/type index/ctti type index.hpp>
#include <format>
template <class T>
voild CallMe(T x) {
static assert (
requires { sqrt(x); }
)s

return sqrt(x);
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[InarHocTnuecKkue cooowieHun

#include <boost/type index/ctti type index.hpp>
#include <format>
template <class T>
voild CallMe(T x) {
static assert (
requires { sqrt(x); }, std::format(
"Define sqgrt() function for {0} in its namespace",
boost: :typeindex: :ctti type index::type id<T>().name()
).c str()
);

return sgrt(x);
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llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:

template <std::size_t ActualSize /* ... */>

static void Validate() noexcept {
static assert(
Size >= ActualSize,
"invalid Size: Size >= sizeof(T) failed"

)
/] ...
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llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:

template <std::size_t ActualSize /* ... */>

static void Validate() noexcept {
static assert(
Size >= ActualSize, std::format(
"’Size’ should be set to at least {}.", Size
).c str()
)s
/] ...
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llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:
~FastPimpl() {
static assert(
Size >= sizeof(T), std::format(
"’Size’ should be set to at least {}.", Size
).c_str()

)
/] ...
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NanbHeuwiue yny4dlleHuUs

* P3652 Constexpr floating-point <charconv>
functions
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std::optional<int> opt;
return *opt;




std::optional<int> opt;
return *opt; // C Hardening: SIGABORT, trap, std::terminate() ...




Hardening & Contracts

std: :optional<int> opt;
return *opt;

int isgrt(int n) noexcept
pre(n >= 0)
post(r: r >= 0)
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HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW



HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW

2 Side effects & UB



HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW
2 Side effects & UB

3 OTKNOYeHe YaCTU KOHTPaKTOB



HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

BupTyasibHble QYHKLUNW
Side effects & UB
OTKJII04YEHNE YaCTUu KOHTPAaKTOB

Tern v bonee rpaHyasspHasd HACTPOUKaA
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JOCTYNHOCTb NPUBATHbLIX YJIEHOB

Pedpnekcna — 3To 3aMeHa a9 BHEeLUHUX
YTUINT, KOTOopble paboTatoT ¢ C++
3aroJIoBKamMu



JOCTYNHOCTb NPUBATHbLIX YJIEHOB

Pehnekcna — 3To 3aMeHa g9 BHeLUHUX

YTUINT, KOTOpble paboTatoT ¢ C++
3aroJ1I0BKaMu

Bcé 4To BUAHO B UCXOAHUKE OO0J1IXKHO ObITh
OOCTYMNHO pemyiekCcnmn



consteval block
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consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;

storage data;

}s
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consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;
consteval {

¥

storage data;

}s
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consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;
consteval {
std: :meta: :define class(”~storage,
{std: :meta::data member spec(~Ts)...});
}

storage data;

}s
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P3725

#include <ranges>

std::vector<std::string> colll{"Amsterdam"”, "Berlin", "Cologne", "LA"};

/] Tepemewaem ANMHHbIE CTPOKM B OOpaTHOM MopAAke B APYron KOHTENHep
auto large = [](const auto& s) { return s.size() > 5; };

auto sub = colll | std::views::filter(large)

| std::views::reverse
| std::views::as rvalue

| std::ranges::to<std::vector>();
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..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>



..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>

2 basic string::append/assign



..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>
2 basic string::append/assign

3 uniform_Int_distribution<uint8 t>



..+ CLLLE NPpOoONIeMbl

UB B <type traits>
basic string::append/assign

uniform int distribution<uint8 t>



..+ CLLLE NPpOoONIeMbl

UB B <type traits>
basic string::append/assign

uniform int distribution<uint8 t>

... newe ~300 npobnem
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1 SIMD
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1 SIMD

2 EXxecutors

3 Constexpr
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8

relocate
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Hazard Pointer

Freestanding

... A ewe

7

8

9

relocate

std::hive

Ranges
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SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

... A ewe

7  relocate
8 std::hive
9 Ranges
A -UB

B auto[x...] =¢t; x...[42];
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https://github.com/userver-framework
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