C++26

HoBocTn nocneaHmx sctpey ISO

< ks
[lonyXnH AHTOH

Antony Polukhin Pl21 C++ POCCUH

Copep>kaHue

— Tuple protocol
- std::format
- Hardening

- consteval

Pr21 C++

180cA-4® - BN Q=R 63%=

SlHpekc &o

OmMmutpus YnbsaH... 43k3, noavesn 2 ©

o i
o A0 <
JlaBKa Takcu
p .« H m
ae Qe o 20
Map Opans Npy3oBon M
L
[OW—
O o Kypna epem? e
C++

C++26
C++29

Tuple protocol

+++++++

Tuple protocol

Pr21 C++

template <std::size t N>
struct sequence{};

Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
: std::integral constant<std::size t, N>

{};

Pr21 C++

Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
. std::integral constant<std::size t, N>
{};
template <std::size t I, std::size t N>
struct std::tuple element<I, sequence<N>> {
using type = std::size t;

}s

Pr21 C++

Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
. std::integral constant<std::size t, N>
{};
template <std::size t I, std::size t N>
struct std::tuple element<I, sequence<N>> {
using type = std::size t;

¥

template<std::size t I, std::size t N>

constexpr std::size t get(sequence<N>) noexcept {
return I;

¥

Pr21 C++

Tuple protocol

template <std::size t N>
struct std::tuple size<sequence<N>>
: std::integral constant<std::size t, N>

{};

template <std::size t I, std::size t N>

struct std::tuple element<I, sequence<N>> {
using type = std::size t;

}s

template<std::size t I, std::size t N>

constexpr std::size t get(sequence<N>) noexcept {
return I;

¥

Pr21 C++

Tuple protocol

auto sample() {
auto [x0, x1, x2] = sequence<3>{};
assert(x0 = 0);
assert(x1l = 1);

assert(x2 = 2);

Pr21 C++

Tuple protocol

auto sample2(auto tuple) {
constexpr auto [...I] = sequence<3>{};
return (std::get<I>(tuple) + ...);

Pr21 C++

Tuple protocol

auto sample2(auto tuple) {
constexpr auto [...I] = sequence<3>{};
return (std::get<I>(tuple) + ...);

¥

auto sample3(auto tuple) {
int sum = 0;
template for(constexpr std::size t I : sequence<3>()) {
sum += std::get<I>(tuple);
}

return sum;

Pr21 C++

Tuple protocol for std::integer sequence

template<class T, T... Values>
struct tuple_size<integer sequence<T, Values...>>;

template<size t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>>;

template<size t I, class T, T... Values>
constexpr T get(integer sequence<T, Values...>) noexcept;

Pr21 C++

Tuple protocol for std::integer sequence

auto sample2(auto tuple) {
constexpr auto [...I] = std::make_index_sequence<3>{};
return (std::get<I>(tuple) + ...);

¥

auto sample3(auto tuple) {
int sum = 0;
template for(constexpr std::size t I: std::make_index_sequence<3>()) {
sum += std::get<I>(tuple);
}

return sum;

Pr21 C++

JIMArHOCTUKa

+++++++

[InarHocTudeckue coooLueHus

template <class T>
void CallMe(T x) {
return sgrt(x);

¥

Pr21 C++

[InarHocTnuecKkue cooowieHun

#include <boost/type index/ctti type index.hpp>
#include <format>
template <class T>
voild CallMe(T x) {
static assert (
requires { sqrt(x); }
)s

return sqrt(x);

Pr21 C++

[InarHocTnuecKkue cooowieHun

#include <boost/type index/ctti type index.hpp>
#include <format>
template <class T>
voild CallMe(T x) {
static assert (
requires { sqrt(x); }, std::format(
"Define sqgrt() function for {0} in its namespace",
boost: :typeindex: :ctti type index::type id<T>().name()
).c str()
);

return sgrt(x);

Pr21 C++

llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:

template <std::size_t ActualSize /* ... */>

static void Validate() noexcept {
static assert(
Size >= ActualSize,
"invalid Size: Size >= sizeof(T) failed"

)
/] ...

Pr21 C++

llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:

template <std::size_t ActualSize /* ... */>

static void Validate() noexcept {
static assert(
Size >= ActualSize, std::format(
"’Size’ should be set to at least {}.", Size
).c str()
)s
/] ...

Pr21 C++

llpuMep U3 userver

template <class T, std::size t Size /* ... */>
class FastPimpl {
private:
~FastPimpl() {
static assert(
Size >= sizeof(T), std::format(
"’Size’ should be set to at least {}.", Size
).c_str()

)
/] ...

Pr21 C++

NanbHeuwiue yny4dlleHuUs

NanbHeuwiue yny4dlleHuUs

* P3652 Constexpr floating-point <charconv>
functions

Pr21 C++

std::optional<int> opt;
return *opt;

std::optional<int> opt;
return *opt; // C Hardening: SIGABORT, trap, std::terminate() ...

Hardening & Contracts

std: :optional<int> opt;
return *opt;

int isgrt(int n) noexcept
pre(n >= 0)
post(r: r >= 0)

Pr21 C++

HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW

HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW

2 Side effects & UB

HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

1 BupTtyanbHble PYHKLINW
2 Side effects & UB

3 OTKNOYeHe YaCTU KOHTPaKTOB

HanbHeuLwlMe yy4ylLleHU KOHTPAKTOB

BupTyasibHble QYHKLUNW
Side effects & UB
OTKJII04YEHNE YaCTUu KOHTPAaKTOB

Tern v bonee rpaHyasspHasd HACTPOUKaA

Reflection

+++++++

JOCTYNHOCTb NPUBATHbLIX YJIEHOB

JOCTYNHOCTb NPUBATHbLIX YJIEHOB

Pedpnekcna — 3To 3aMeHa a9 BHEeLUHUX
YTUINT, KOTOopble paboTatoT ¢ C++
3aroJIoBKamMu

JOCTYNHOCTb NPUBATHbLIX YJIEHOB

Pehnekcna — 3To 3aMeHa g9 BHeLUHUX

YTUINT, KOTOpble paboTatoT ¢ C++
3aroJ1I0BKaMu

Bcé 4To BUAHO B UCXOAHUKE OO0J1IXKHO ObITh
OOCTYMNHO pemyiekCcnmn

consteval block

Pr21 C++

consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;

storage data;

}s

Pr21 C++

consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;
consteval {

¥

storage data;

}s

Pr21 C++

consteval block

#include <meta>

template<typename... Ts> struct Tuple {
struct storage;
consteval {
std: :meta: :define class(”~storage,
{std: :meta::data member spec(~Ts)...});
}

storage data;

}s

Pr21 C++

[Mpo4yue barm

+++++++

P3725

#include <ranges>

std::vector<std::string> colll{"Amsterdam"”, "Berlin", "Cologne", "LA"};

/] Tepemewaem ANMHHbIE CTPOKM B OOpaTHOM MopAAke B APYron KOHTENHep
auto large = [](const auto& s) { return s.size() > 5; };

auto sub = colll | std::views::filter(large)

| std::views::reverse
| std::views::as rvalue

| std::ranges::to<std::vector>();

P21 C++ 42 @

..+ CLLLE NPpOoONIeMbl

..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>

..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>

2 basic string::append/assign

..+ CLLLE NPpOoONIeMbl

1 UB B <type traits>
2 basic string::append/assign

3 uniform_Int_distribution<uint8 t>

..+ CLLLE NPpOoONIeMbl

UB B <type traits>
basic string::append/assign

uniform int distribution<uint8 t>

..+ CLLLE NPpOoONIeMbl

UB B <type traits>
basic string::append/assign

uniform int distribution<uint8 t>

... newe ~300 npobnem

+++++++

1 SIMD

1 SIMD

2 EXxecutors

1 SIMD

2 EXxecutors

3 Constexpr

SIMD
Executors
Constexpr

Linalg

SIMD
Executors
Constexpr
Linalg

Hazard Pointer

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

... A ewe

7

relocate

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

7

8

relocate

std::hive

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

... A ewe

7

8

9

relocate

std::hive

Ranges

... A ewe

SIMD 7 reloeate
Executors 8 std::hive
Constexpr 9 Ranges
Linalg A -UB

Hazard Pointer

Freestanding

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

... A ewe

7 relocate
8 std::hive
9 Ranges
A -UB

B auto[x...] =¢t; x...[42];

SIMD

Executors
Constexpr
Linalg

Hazard Pointer

Freestanding

... A ewe

7 relocate
8 std::hive
9 Ranges
A -UB

B auto[x...] =¢t; x...[42];

Cnacnbo

[lonyXnH AHTOH

JKcnepT-pa3paboTumk C++

g antoshkka@gmail.com
g antoshkka@yandex-team.ru

o https://github.com/apolukhin
C#+ https://stdcpp.ru/

CCCCCCCCCCCCC

https://github.com/userver-framework

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/
https://github.com/userver-framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	вопрос/тема
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

