
Antony Polukhin

Полухин Антон

C++26
Новости последних встреч ISO



РГ21 C++ 2

Содержание

–  Tuple protocol
–  std::format
–  Hardening
–  consteval

С++          

C++26            
C++29            



РГ21 C++ 3

Tuple protocol



РГ21 C++ 4

Tuple protocol



РГ21 C++ 5

template <std::size_t N>
struct sequence{};

Tuple protocol



РГ21 C++ 6

template <std::size_t N>
struct std::tuple_size<sequence<N>>
        : std::integral_constant<std::size_t, N>
{};

Tuple protocol



РГ21 C++ 7

template <std::size_t N>
struct std::tuple_size<sequence<N>>
        : std::integral_constant<std::size_t, N>
{};
template <std::size_t I, std::size_t N>
struct std::tuple_element<I, sequence<N>> {
    using type = std::size_t;
};

Tuple protocol



РГ21 C++ 8

template <std::size_t N>
struct std::tuple_size<sequence<N>>
        : std::integral_constant<std::size_t, N>
{};
template <std::size_t I, std::size_t N>
struct std::tuple_element<I, sequence<N>> {
    using type = std::size_t;
};
template<std::size_t I, std::size_t N>
constexpr std::size_t get(sequence<N>) noexcept {
    return I;
}

Tuple protocol



РГ21 C++ 9

template <std::size_t N>
struct std::tuple_size<sequence<N>>
        : std::integral_constant<std::size_t, N>
{};
template <std::size_t I, std::size_t N>
struct std::tuple_element<I, sequence<N>> {
    using type = std::size_t;
};
template<std::size_t I, std::size_t N>
constexpr std::size_t get(sequence<N>) noexcept {
    return I;
}

Tuple protocol



РГ21 C++ 10

auto sample() {

    auto [x0, x1, x2] = sequence<3>{};

    assert(x0 = 0);

    assert(x1 = 1);

    assert(x2 = 2);
}

Tuple protocol



РГ21 C++ 11

auto sample2(auto tuple) {
    constexpr auto [...I] = sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

Tuple protocol



РГ21 C++ 12

auto sample2(auto tuple) {
    constexpr auto [...I] = sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

auto sample3(auto tuple) {
    int sum = 0;
    template for(constexpr std::size_t I : sequence<3>()) {
        sum += std::get<I>(tuple);
    }
    return sum;
}

Tuple protocol



РГ21 C++ 13

template<class T, T... Values>
struct tuple_size<integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
struct tuple_element<I, integer_sequence<T, Values...>>;

template<size_t I, class T, T... Values>
constexpr T get(integer_sequence<T, Values...>) noexcept;

Tuple protocol for std::integer_sequence



РГ21 C++ 14

auto sample2(auto tuple) {
    constexpr auto [...I] = std::make_index_sequence<3>{};
    return (std::get<I>(tuple) + ...);
}

auto sample3(auto tuple) {
    int sum = 0;
    template for(constexpr std::size_t I: std::make_index_sequence<3>()) {
        sum += std::get<I>(tuple);
    }
    return sum;
}

Tuple protocol for std::integer_sequence



РГ21 C++ 15

Диагностика



РГ21 C++ 16

template <class T>
void CallMe(T x) {
    return sqrt(x);
}

Диагностические сообщения



РГ21 C++ 17

#include <boost/type_index/ctti_type_index.hpp>
#include <format>
template <class T>
void CallMe(T x) {
    static_assert (
        requires { sqrt(x); }
    );
    return sqrt(x);
}

Диагностические сообщения



РГ21 C++ 18

#include <boost/type_index/ctti_type_index.hpp>
#include <format>
template <class T>
void CallMe(T x) {
    static_assert (
        requires { sqrt(x); }, std::format(
            "Define sqrt() function for {0} in its namespace",
            boost::typeindex::ctti_type_index::type_id<T>().name()
        ).c_str()
    );
    return sqrt(x);
}

Диагностические сообщения



РГ21 C++ 19

template <class T, std::size_t Size /* ... */>
class FastPimpl {
private:
    template <std::size_t ActualSize /* ... */>
    static void Validate() noexcept {
        static_assert(
            Size >= ActualSize,
            "invalid Size: Size >= sizeof(T) failed"

        );
        // ...
    }

Пример из userver



РГ21 C++ 20

template <class T, std::size_t Size /* ... */>
class FastPimpl {
private:
    template <std::size_t ActualSize /* ... */>
    static void Validate() noexcept {
        static_assert(
            Size >= ActualSize, std::format(
            "’Size’ should be set to at least {}.", Size
            ).c_str()
        );
        // ...
    }

Пример из userver



РГ21 C++ 21

template <class T, std::size_t Size /* ... */>
class FastPimpl {
private:
    ~FastPimpl() {
        static_assert(
            Size >= sizeof(T), std::format(
            "’Size’ should be set to at least {}.", Size
            ).c_str()

        );
        // ...
    }

Пример из userver



Дальнейшие улучшения



Дальнейшие улучшения

* P3652 Constexpr floating-point <charconv> 
functions



РГ21 C++ 24

Баги



РГ21 C++ 25

std::optional<int> opt;
return *opt;

Что случится?



РГ21 C++ 26

std::optional<int> opt;
return *opt;  // С Hardening: SIGABORT, trap, std::terminate() ...

Что случится?



РГ21 C++ 27

std::optional<int> opt;
return *opt;

int isqrt(int n) noexcept
  pre(n >= 0)
  post(r: r >= 0)
;

Hardening & Contracts



Дальнейшие улучшения контрактов



Дальнейшие улучшения контрактов

1 Виртуальные функции



Дальнейшие улучшения контрактов

1 Виртуальные функции

2 Side effects & UB



Дальнейшие улучшения контрактов

1 Виртуальные функции

2 Side effects & UB

3 Отключение части контрактов



Дальнейшие улучшения контрактов

1 Виртуальные функции

2 Side effects & UB

3 Отключение части контрактов

4 Теги и более гранулярная настройка



РГ21 C++ 33

Reflection



Доступность приватных членов



Доступность приватных членов

! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками



Доступность приватных членов

! Рефлексия — это замена для внешних 
утилит, которые работают с C++ 
заголовками

Всё что видно в исходнике должно быть 
доступно рефлексии



РГ21 C++ 37

consteval block



РГ21 C++ 38

#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  

  storage data;
};

consteval block



РГ21 C++ 39

#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  consteval {
    

  }
  storage data;
};

consteval block



РГ21 C++ 40

#include <meta>

template<typename... Ts> struct Tuple {
  struct storage;
  consteval {
    std::meta::define_class(^storage,
                 {std::meta::data_member_spec(^Ts)...});
  }
  storage data;
};

consteval block



РГ21 C++ 41

Прочие баги



РГ21 C++ 42

#include <ranges>

std::vector<std::string> coll1{"Amsterdam", "Berlin", "Cologne", "LA"};

// Перемещаем длинные строки в обратном порядке в другой контейнер

auto large = [](const auto& s) { return s.size() > 5; };

auto sub = coll1 | std::views::filter(large)

               | std::views::reverse

               | std::views::as_rvalue

               | std::ranges::to<std::vector>();

P3725



… ещё проблемы



… ещё проблемы

1 UB в <type_traits>



… ещё проблемы

1 UB в <type_traits>

2 basic_string::append/assign



… ещё проблемы

1 UB в <type_traits>

2 basic_string::append/assign

3 uniform_int_distribution<uint8_t>



… ещё проблемы

1 UB в <type_traits>

2 basic_string::append/assign

3 uniform_int_distribution<uint8_t>

4 ...



… ещё проблемы

1 UB в <type_traits>

2 basic_string::append/assign

3 uniform_int_distribution<uint8_t>

4 ...

5 … и ещё ~300 проблем



РГ21 C++ 49

С++26



… а ещё



… а ещё

1 SIMD



… а ещё

1 SIMD

2 Executors



… а ещё

1 SIMD

2 Executors

3 Constexpr



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];



… а ещё

1 SIMD

2 Executors

3 Constexpr

4 Linalg

5 Hazard Pointer

6 Freestanding

7 relocate

8 std::hive

9 Ranges

A -UB

B auto [x…] = t; x...[42];

C ...



Спасибо



Полухин Антон
Эксперт-разработчик C++ 

antoshkka@yandex-team.ru

antoshkka@gmail.com

https://github.com/apolukhin

https://stdcpp.ru/

https://github.com/userver-framework

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/
https://github.com/userver-framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	вопрос/тема
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

