
Антон Полухин
Эксперт разработчик C++

C++20 Модули
практическое внедрение

Техплатформа городских
сервисов Яндекса

C++ Zero Cost Conf 2

Содержание

– Что такое модули
– Как написать модуль для нового проекта
– Модуляризация имеющегося проекта

● Boost.PFR
● Libstdc++, libc++
● Boost.PFR (вторая попытка)
● Boost.Any, Boost.TypeIndex, ...

С++

userver
Boost

Одноюнитные именованные модули
Какие именно модули?

Одноюнитные именованные модули
Какие именно модули?

1 Не import <header/file.hpp>

Одноюнитные именованные модули
Какие именно модули?

1 Не import <header/file.hpp>

2 Не precompiled headers

Одноюнитные именованные модули
Какие именно модули?

1 Не import <header/file.hpp>

2 Не precompiled headers

3 Не мультиюнитные модули

C++ Zero Cost Conf 7

Что такое модули?

C++ Zero Cost Conf 8

#include <iostream>

int main() { std::cout << "Hello" << std::endl; }

Обычные #include

C++ Zero Cost Conf 9

$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt

180 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 10

$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt

180 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 11

$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt

180 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 12

import std;

int main() { std::cout << "Hello" << std::endl; }

Обычные #include

C++ Zero Cost Conf 13

$ clang++-19 -M main.cpp -o includes.txt

$ clang++-19 -E main.cpp -o preprocessed.txt

$ wc -l includes.txt

1 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 196 Jun 11 14:12 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 14

$ clang++-19 -M main.cpp -o includes.txt

$ clang++-19 -E main.cpp -o preprocessed.txt

$ wc -l includes.txt

1 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 196 Jun 11 14:12 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 15

$ clang++-19 -M main.cpp -o includes.txt

$ clang++-19 -E main.cpp -o preprocessed.txt

$ wc -l includes.txt

1 includes.txt

$ ls -lh preprocessed.txt

-rw-rw-r-- 1 antoshkka antoshkka 196 Jun 11 14:12 preprocessed.txt

Обычные #include

C++ Zero Cost Conf 16

И какое же
ускорение?

(в теории)
Ускорение

1 На каждый #include нужно
открыть файл

2 Прочесть/подмапить его в
память
Разбить на токены3

4 Препроцессировать

5 Парсинг, построение AST

* ...

100 *.cpp файлов собирается на 5 ядрах
Сборка проекта без модулей

100 *.cpp файлов собирается на 5 ядрах
Сборка проекта без модулей

iostream user codegen

iostream user codegen

iostream user codegen

iostream user codegen

iostream user codegen

100 *.cpp файлов собирается на 5 ядрах
Сборка проекта без модулей

iostream user codegen iostream user codegen

iostream user codegen iostream user codegen

iostream user codegen iostream user codegen

iostream user codegen iostream user codegen

iostream user codegen iostream user codegen

100 *.cpp файлов собирается на 5 ядрах
Сборка проекта без модулей

iostream user codegen iostream user codegen iostream user codegen

iostream user codegen iostream user codegen iostream user codegen

iostream user codegen iostream user codegen iostream user codegen

iostream user codegen iostream user codegen iostream user codegen

iostream user codegen iostream user codegen iostream user codegen

Сборка проекта c модулем

iostream user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

Сборка проекта c модулем

iostream user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Сборка проекта c модулем

iostream user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Дебаг

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Сборка проекта c модулем

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Дебаг + повторная сборка

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Сборка проекта c модулем

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Двухфазная сборка модуля (оч экспериментально)

iostream

(на практике)
Ускорение

Не на синтетике — ускорение x2-x3

C++ Zero Cost Conf 28

Модуль для нового
проекта

C++ Zero Cost Conf 29

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 30

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 31

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 32

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 33

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 34

export module my_module;

namespace impl {

 int get_42() { return 42; } module linkage
}

export int get_the_answer() { return impl::get_42(); } external

purview

C++ Zero Cost Conf 35

export module my_module;

namespace impl {

 int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 36

export module my_module;

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

purview

C++ Zero Cost Conf 37

export module my_module;

#include <cstdint>

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

ОЧЕНЬ ПЛОХО!!!!

C++ Zero Cost Conf 38

export module my_module;

#include <cstdint>

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

ОЧЕНЬ ПЛОХО!!!!

C++ Zero Cost Conf 39

#include <cstdint>

export module my_module;

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

(почти) глобальный фрагмент

C++ Zero Cost Conf 40

#include <cstdint>

export module my_module;

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

(почти) глобальный фрагмент

C++ Zero Cost Conf 41

module;

#include <cstdint>

export module my_module;

namespace impl {

 std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

Глобальный фрагмент

C++ Zero Cost Conf 42

module;

#include <cstdint> Global fragment

 Primary Module

export module my_module; Interface unit

namespace impl { (PMI)

 std::int32_t get_42(); Purview

}

export std::int32_t get_the_answer();

Глобальный фрагмент

C++ Zero Cost Conf 43

Как собирать
модуль?

C++ Zero Cost Conf 44

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 45

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 46

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 47

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 48

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 49

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 50

add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

 FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt

C++ Zero Cost Conf 51

Как использовать
модуль?

C++ Zero Cost Conf 52

target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt

C++ Zero Cost Conf 53

target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt

C++ Zero Cost Conf 54

target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt

C++ Zero Cost Conf 55

import my_module;

int32_t main() { return get_the_answer(); }

main.cpp

C++ Zero Cost Conf 56

А теперь, самая
вкуснятина...

C++ Zero Cost Conf 57

Имеющийся
проект как модуль

C++ Zero Cost Conf 58

module;

#include <bits/all.hpp>

export module std;

export namespace std {
 using std::all_of;
 using std::any_of;
 using std::none_of;
 // ...

libstdc++, libc++

59

МинусыПлюсы

60

МинусыПлюсы

1 Все изменения локализованы в
одном файле

61

МинусыПлюсы

1 Все изменения локализованы в
одном файле

2 ABI совместимо с #include

62

МинусыПлюсы

1 Все изменения локализованы в
одном файле

2 ABI совместимо с #include

Легко реализовать3

63

МинусыПлюсы

1 Всё в глобальном фрагменте1 Все изменения локализованы в
одном файле

2 ABI совместимо с #include

Легко реализовать3

64

МинусыПлюсы

1 Всё в глобальном фрагменте

2 Легко «забыть» экспортировать
новый функционал

1 Все изменения локализованы в
одном файле

2 ABI совместимо с #include

Легко реализовать3

65

МинусыПлюсы

1 Всё в глобальном фрагменте

2 Легко «забыть» экспортировать
новый функционал
Тяжёлая миграция для
пользователей

3

1 Все изменения локализованы в
одном файле

2 ABI совместимо с #include

Легко реализовать3

C++ Zero Cost Conf 66

Единый header для
модуля и для

include

C++ Zero Cost Conf 67

#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)

C++ Zero Cost Conf 68

#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)

C++ Zero Cost Conf 69

#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)

C++ Zero Cost Conf 70

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)

C++ Zero Cost Conf 71

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)

C++ Zero Cost Conf 72

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)

C++ Zero Cost Conf 73

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)

C++ Zero Cost Conf 74

module;

...

export module boost.pfr;

#ifdef BOOST_PFR_ATTACH_TO_GLOBAL_MODULE

extern "C++" {
 #include <boost/pfr.hpp>

}

#else

include <boost/pfr.hpp>

#endif

Boost.PFR (попытка 1, cppm файл)

75

МинусыПлюсы

76

МинусыПлюсы

1 Сложно «забыть» экспортировать
новый функционал

77

МинусыПлюсы

2 ABI совместимо с #include при
наличии такого требования

1 Сложно «забыть» экспортировать
новый функционал

78

МинусыПлюсы

2 ABI совместимо с #include при
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать
новый функционал

79

МинусыПлюсы

1 Два ABI, две библиотеки

2 ABI совместимо с #include при
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать
новый функционал

80

МинусыПлюсы

1 Два ABI, две библиотеки

2 Очень много приёмов «на грани
фола»

2 ABI совместимо с #include при
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать
новый функционал

81

МинусыПлюсы

1 Два ABI, две библиотеки

2 Очень много приёмов «на грани
фола»
Тяжёлая миграция для
пользователей

3

2 ABI совместимо с #include при
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать
новый функционал

C++ Zero Cost Conf 82

Единый header для
модуля, и include с

авто import

C++ Zero Cost Conf 83

#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)

C++ Zero Cost Conf 84

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 85

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 86

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 87

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 88

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 89

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 90

#include <boost/pfr/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

Boost.PFR (попытка 2, header)

C++ Zero Cost Conf 91

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

Boost.PFR (попытка 2, cppm файл)

C++ Zero Cost Conf 92

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

Boost.PFR (попытка 2, cppm файл)

C++ Zero Cost Conf 93

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

Boost.PFR (попытка 2, cppm файл)

94

МинусыПлюсы

95

МинусыПлюсы

1 Сложно «забыть» экспортировать
новый функционал

96

МинусыПлюсы

2 ABI совместимо с #include при
наличии такого требования в
рамках одной настройки сборки

1 Сложно «забыть» экспортировать
новый функционал

97

МинусыПлюсы

2 ABI совместимо с #include при
наличии такого требования в
рамках одной настройки сборки
Простейшая миграция для
пользователей

3

1 Сложно «забыть» экспортировать
новый функционал

98

МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при
наличии такого требования в
рамках одной настройки сборки
Простейшая миграция для
пользователей

3

1 Сложно «забыть» экспортировать
новый функционал

C++ Zero Cost Conf 99

Больше примеров

C++ Zero Cost Conf 100

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

import std;

C++ Zero Cost Conf 101

module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

import std;

C++ Zero Cost Conf 102

module;

#include <any>

#include <array>

#include <limits>

#include <string>

#include <string_view>

#include <type_traits>

#include <tuple>

#include <utility>

#include <variant>

import std;

C++ Zero Cost Conf 103

module;

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

import std;

#include <boost/pfr.hpp>

import std;

C++ Zero Cost Conf 104

module;

#ifndef BOOST_PFR_USE_STD_MODULE

#include <type_traits>

#endif

export module boost.pfr;

#ifdef BOOST_PFR_USE_STD_MODULE

import std;

#endif

import std;

C++ Zero Cost Conf 105

Связанные модули

C++ Zero Cost Conf 106

#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)

C++ Zero Cost Conf 107

#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)

C++ Zero Cost Conf 108

#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)

C++ Zero Cost Conf 109

module;

#include <boost/type_index.hpp>

#include <type_traits>

#define BOOST_ANY_BEGIN_MODULE_EXPORT export {

#define BOOST_ANY_END_MODULE_EXPORT }

#define BOOST_ANY_INTERFACE_UNIT

export module boost.any;

#include <boost/any.hpp>

#include <boost/any/basic_any.hpp>

Boost.Any (cppm файл)

C++ Zero Cost Conf 110

module;

#include <boost/type_index.hpp>

#include <type_traits>

#define BOOST_ANY_BEGIN_MODULE_EXPORT export {

#define BOOST_ANY_END_MODULE_EXPORT }

#define BOOST_ANY_INTERFACE_UNIT

export module boost.any;

#include <boost/any.hpp>

#include <boost/any/basic_any.hpp>

Boost.Any (cppm файл)

111

МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при
наличии такого требования в
рамках одной настройки сборки
Простейшая миграция для
пользователей

3

1 Сложно «забыть» экспортировать
новый функционал

112

МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при
наличии такого требования в
рамках одной настройки сборки
Простейшая миграция для
пользователей

3

1 Сложно «забыть» экспортировать
новый функционал

Дружелюбно к зависящим
модулям, не требует
синхронизаций усилий
разработчиков

4

C++ Zero Cost Conf 113

Неожиданные
проблемы

(для разработчиков проекта)
Проблемы с модулями

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не
экспортированных частей

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не экспортированных частей:

namespace impl {
struct foo;
std::ostream& operator<<(std::ostream&, const foo&);
}

export impl::foo bar();
…
std::cout << bar();

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не
экспортированных частей

5 Компиляторы чуть сыроваты

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не
экспортированных частей

5 Компиляторы чуть сыроваты

6 Системы сборки чуть сыроваты

(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не
экспортированных частей

5 Компиляторы чуть сыроваты

6 Системы сборки чуть сыроваты

7 ?? Манглинг меняется ??

C++ Zero Cost Conf 123

Попробуйте в
своём проекте!

Спасибо

Полухин Антон
Эксперт-разработчик C++

antoshkka@yandex-team.ru

antoshkka@gmail.com

https://github.com/apolukhin

https://stdcpp.ru/

https://github.com/userver-framework

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/
https://github.com/userver-framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	вопрос/тема
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

