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Одноюнитные именованные модули
Какие именно модули?

1 Не import <header/file.hpp>

2 Не precompiled headers

3 Не мультиюнитные модули
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Что такое модули?
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#include <iostream>

int main() { std::cout << "Hello" << std::endl;  }

Обычные #include
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$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt 

180 includes.txt

$ ls -lh preprocessed.txt 

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include



C++ Zero Cost Conf 10

$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt 

180 includes.txt

$ ls -lh preprocessed.txt 

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include



C++ Zero Cost Conf 11

$ clang++-19 -E main.cpp -o preprocessed.txt

$ clang++-19 -M main.cpp -o includes.txt

$ wc -l includes.txt 

180 includes.txt

$ ls -lh preprocessed.txt 

-rw-rw-r-- 1 antoshkka antoshkka 839K Jun 11 14:11 preprocessed.txt

Обычные #include



C++ Zero Cost Conf 12

import std;

int main() { std::cout << "Hello" << std::endl;  }

Обычные #include
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$ clang++-19 -M main.cpp -o includes.txt

$ clang++-19 -E main.cpp -o preprocessed.txt

$ wc -l includes.txt 

1 includes.txt

$ ls -lh preprocessed.txt 

-rw-rw-r-- 1 antoshkka antoshkka 196 Jun 11 14:12 preprocessed.txt

Обычные #include
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И какое же 
ускорение?



(в теории)
Ускорение

1 На каждый #include нужно 
открыть файл

2 Прочесть/подмапить его в 
память
Разбить на токены3

4 Препроцессировать

5 Парсинг, построение AST

* ...
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Дебаг + повторная сборка

user codegen
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Сборка проекта c модулем

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen user codegen

user codegen user codegen

user codegen

user codegen

user codegen

user codegen

user codegen

Двухфазная сборка модуля (оч экспериментально)

iostream



(на практике)
Ускорение

Не на синтетике — ускорение x2-x3
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Модуль для нового 
проекта
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export module my_module;

namespace impl {

  int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview
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export module my_module;

namespace impl {

  int get_42() { return 42; }       module linkage
}

export int get_the_answer() { return impl::get_42(); }      external

purview
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export module my_module;

namespace impl {

  int get_42() { return 42; }
}

export int get_the_answer() { return impl::get_42(); }

purview
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export module my_module;

namespace impl {

  std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

purview
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export module my_module;

#include <cstdint>

namespace impl {

  std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

ОЧЕНЬ ПЛОХО!!!!
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export module my_module;

#include <cstdint>

namespace impl {
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#include <cstdint>

export module my_module;

namespace impl {

  std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

(почти) глобальный фрагмент
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#include <cstdint>

export module my_module;

namespace impl {

  std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

(почти) глобальный фрагмент
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module;

#include <cstdint>

export module my_module;

namespace impl {

  std::int32_t get_42() { return 42; }
}

export std::int32_t get_the_answer() { return impl::get_42(); }

Глобальный фрагмент
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module;

#include <cstdint>           Global fragment

                                                            Primary Module

export module my_module;                                    Interface unit 

namespace impl {                                            (PMI)

  std::int32_t get_42();                       Purview

}

export std::int32_t get_the_answer();

Глобальный фрагмент
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Как собирать 
модуль?
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add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

    FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt
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add_library(my_module_cmake)

target_sources(my_module_cmake PUBLIC

    FILE_SET modules_public TYPE CXX_MODULES FILES my_module.cppm
)

target_compile_features(my_module_cmake PUBLIC cxx_std_20)

CMakeLists.txt
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Как использовать 
модуль?
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target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt
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target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt
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target_link_libraries(${PROJECT_NAME} PRIVATE my_module_cmake)

CMakeLists.txt
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import my_module;

int32_t main() { return get_the_answer(); }

main.cpp
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А теперь, самая 
вкуснятина...
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Имеющийся 
проект как модуль
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module;

#include <bits/all.hpp>

export module std;

export namespace std {
  using std::all_of;
  using std::any_of;
  using std::none_of;
  // ...

libstdc++, libc++
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МинусыПлюсы
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МинусыПлюсы

1 Всё в глобальном фрагменте
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МинусыПлюсы

1 Всё в глобальном фрагменте

2 Легко «забыть» экспортировать 
новый функционал
Тяжёлая миграция для 
пользователей

3

1 Все изменения локализованы в 
одном файле

2 ABI совместимо с #include

Легко реализовать3
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Единый header для 
модуля и для 

include
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#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)
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#pragma once

#include <type_traits>
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namespace boost::pfr {
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)



C++ Zero Cost Conf 71

module;
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

export module boost.pfr;

...

Boost.PFR (попытка 1, cppm файл)
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module;

...

export module boost.pfr;

#ifdef BOOST_PFR_ATTACH_TO_GLOBAL_MODULE

extern "C++" {
  #include <boost/pfr.hpp>

}

#else

#  include <boost/pfr.hpp>

#endif

Boost.PFR (попытка 1, cppm файл)
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МинусыПлюсы

2 ABI совместимо с #include при 
наличии такого требования

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

2 ABI совместимо с #include при 
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

1 Два ABI, две библиотеки

2 ABI совместимо с #include при 
наличии такого требования
Легко реализовать3
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МинусыПлюсы

1 Два ABI, две библиотеки

2 Очень много приёмов «на грани 
фола»

2 ABI совместимо с #include при 
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

1 Два ABI, две библиотеки

2 Очень много приёмов «на грани 
фола»
Тяжёлая миграция для 
пользователей

3

2 ABI совместимо с #include при 
наличии такого требования
Легко реализовать3

1 Сложно «забыть» экспортировать 
новый функционал
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Единый header для 
модуля, и include с 

авто import
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#pragma once

#include <type_traits>

#include <boost/pfr/detail/fields_count.hpp>

namespace boost::pfr {

BOOST_PFR_BEGIN_MODULE_EXPORT

template <class T> constexpr auto tuple_size_v = tuple_size<T>::value;

BOOST_PFR_END_MODULE_EXPORT

}} // namespace boost::pfr

Boost.PFR (попытка 1, header)
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#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)
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#endif
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#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)



C++ Zero Cost Conf 88

#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
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#pragma once

#if defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

import boost.pfr;
#endif

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

Boost.PFR (попытка 2, header)
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#include <boost/pfr/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_PFR_INTERFACE_UNIT)
#include <boost/pfr/detail/fields_count.hpp>

#if !defined(BOOST_PFR_INTERFACE_UNIT)

#include <type_traits>
#endif

namespace boost::pfr { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_PFR_INTERFACE_UNIT)

Boost.PFR (попытка 2, header)
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

Boost.PFR (попытка 2, cppm файл)
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module;

#include <type_traits>
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МинусыПлюсы

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

2 ABI совместимо с #include при 
наличии такого требования в 
рамках одной настройки сборки

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

2 ABI совместимо с #include при 
наличии такого требования в 
рамках одной настройки сборки
Простейшая миграция для 
пользователей

3

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при 
наличии такого требования в 
рамках одной настройки сборки
Простейшая миграция для 
пользователей

3

1 Сложно «забыть» экспортировать 
новый функционал
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Больше примеров
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

import std;
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module;

#include <type_traits>

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

#include <boost/pfr.hpp>

import std;
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module;

#include <any>

#include <array>

#include <limits>

#include <string>

#include <string_view>

#include <type_traits>

#include <tuple>

#include <utility>

#include <variant>

import std;
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module;

#define BOOST_PFR_BEGIN_MODULE_EXPORT export {

#define BOOST_PFR_END_MODULE_EXPORT }

#define BOOST_PFR_INTERFACE_UNIT

export module boost.pfr;

import std;

#include <boost/pfr.hpp>

import std;
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module;

#ifndef BOOST_PFR_USE_STD_MODULE

#include <type_traits>

#endif

export module boost.pfr;

#ifdef BOOST_PFR_USE_STD_MODULE

import std;

#endif

import std;
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Связанные модули
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#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)
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#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)
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#include <boost/any/detail/config.hpp>

#if !defined(BOOST_USE_MODULES) || defined(BOOST_ANY_INTERFACE_UNIT)

#if !defined(BOOST_ANY_INTERFACE_UNIT)
#include <boost/type_index.hpp>

#include <type_traits>
#endif

namespace boost::anys { /* ... */ }

#endif // defined(BOOST_USE_MODULES) && !defined(BOOST_ANY_INTERFACE_UNIT)

Boost.Any (header)



C++ Zero Cost Conf 109

module;

#include <boost/type_index.hpp>

#include <type_traits>

#define BOOST_ANY_BEGIN_MODULE_EXPORT export {

#define BOOST_ANY_END_MODULE_EXPORT }

#define BOOST_ANY_INTERFACE_UNIT

export module boost.any;

#include <boost/any.hpp>

#include <boost/any/basic_any.hpp>

Boost.Any (cppm файл)
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module;

#include <boost/type_index.hpp>

#include <type_traits>

#define BOOST_ANY_BEGIN_MODULE_EXPORT export {

#define BOOST_ANY_END_MODULE_EXPORT }

#define BOOST_ANY_INTERFACE_UNIT

export module boost.any;

#include <boost/any.hpp>

#include <boost/any/basic_any.hpp>

Boost.Any (cppm файл)
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МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при 
наличии такого требования в 
рамках одной настройки сборки
Простейшая миграция для 
пользователей

3

1 Сложно «забыть» экспортировать 
новый функционал
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МинусыПлюсы

1 Очень муторно править код

2 ABI совместимо с #include при 
наличии такого требования в 
рамках одной настройки сборки
Простейшая миграция для 
пользователей

3

1 Сложно «забыть» экспортировать 
новый функционал

Дружелюбно к зависящим 
модулям, не требует 
синхронизаций усилий 
разработчиков

4
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Неожиданные 
проблемы



(для разработчиков проекта)
Проблемы с модулями
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(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не экспортированных частей:

namespace impl {
struct foo;
std::ostream& operator<<(std::ostream&, const foo&);
}

export impl::foo bar();
…
std::cout << bar();
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(для разработчиков проекта)
Проблемы с модулями

1 Сложно протестировать impl

2 Надо тестировать модуль

Макросы не экспортируются3

4 ADL не работает для явно не 
экспортированных частей

5 Компиляторы чуть сыроваты

6 Системы сборки чуть  сыроваты

7 ?? Манглинг меняется ??
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Попробуйте в 
своём проекте!



Спасибо



Полухин Антон
Эксперт-разработчик C++ 

antoshkka@yandex-team.ru

antoshkka@gmail.com

https://github.com/apolukhin

https://stdcpp.ru/

https://github.com/userver-framework

mailto:antoshkka@yandex-team.ru%20
mailto:antoshkka@gmail.com
https://github.com/apolukhin
https://stdcpp.ru/
https://github.com/userver-framework
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