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New Thread OS

receive();

process(data);

send(data);

Destroy thread



Thread OS

accept(listener);

accept(listener);

receive(new_socket);

process(data1);

send(new_socket, data1);

accept(listener);

receive(new_socket2);



void View::Handle(Request&& request, const Dependencies& dependencies, Response
response) {
dependencies.pg->GetCluster(
[request = std::move(request), response](auto cluster)

{
cluster->Begin(storages::postgres::ClusterHostType::kMaster,
[request = std::move(request), response](auto& trx)

{
const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
psql::Execute(trx, statement, request.id,
[request = std::move(request), response, trx = std::move(trx)](auto& res)

{
auto row = res[0];
if (!row["ok"].As<bool>()) {
if (LogDebug()) {

callback hell



GetSomeInfoFromDb([id = request.id](auto info) {
LOG_DEBUG() << id << " is not OK of " << info;

});
}
*response = Response400{};

}
psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar,
[row = std::move(row), trx = std::move(trx), response]()

{
trx.Commit([row = std::move(row), response]() {
*response = Response200{row["baz"].As<std::string>()};

});
});

});
});

});
}

callback hell



});

}

callback hell
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GC?



garbage
collector

}



userver::rcu::Variable<T>garbage
collector



reflection 
or codegen?



userver_add_sql_library(
${PROJECT_NAME}_sql
NAMESPACE real_medium
OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}
SQL_FILES src/db/*.sql

)

file(GLOB_RECURSE SCHEMAS ${CMAKE_CURRENT_SOURCE_DIR}/docs/*.yaml)
userver_target_generate_chaotic(${PROJECT_NAME}-chgen

LAYOUT "/components/schemas/([^/]*)/=real_medium::handlers::{0}"
GENERATE_SERIALIZERS
OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/src
SCHEMAS ${SCHEMAS}
RELATIVE_TO ${CMAKE_CURRENT_SOURCE_DIR}

)

reflection or codegen



#include <boost/pfr/core.hpp>

struct sample {
char c;
float f;

};

sample var{};
boost::pfr::get<1>(var) = 42.01f;
boost::pfr::get<char>(var) = 'A';

std::cout << var.c << var.f; // A 42.01

reflection or codegen



что мы ещё 
добавили

01 Асинхронное логирование



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты

06 Документация



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты

06 Документация

07 Отладочные скрипты



userver



почти Go
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10 Инструменты профилирования
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выводы



текст вывода
в одну или

несколько строк
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