
из C++
делаем Go-lang
 

Полухин Антон
Эксперт разработчик C++





о чём поговорим

Зачем?!?!?! 01

Как? 02

Получился ли Go-lang? 03

Достаточно ли этого для production? 04



зачем!?!?!
01



что было в компании 
на начало проекта



что было в компании 
на начало проекта

Огромная кодовая 
база на C++

01



что было в компании 
на начало проекта

Большой штат C++
разработчиков

Огромная кодовая 
база на C++

01 02



что было в компании 
на начало проекта

Высокая нагрузка 
на железо, CPU 
интенсивные задачи

Большой штат C++
разработчиков

Огромная кодовая 
база на C++

01 02 03



что было в компании 
на начало проекта

Ожидалось
большое
количество 
IO-bound задач

Высокая нагрузка 
на железо, CPU 
интенсивные задачи

Большой штат C++
разработчиков

Огромная кодовая 
база на C++

01 02 03 04



что было в мире 
на начало проекта



что было в мире 
на начало проекта

Для C++ не было ничего удобного 
для работы с IO-bound задачами

01



что было в мире 
на начало проекта

Другие языки влекут 
за собой увеличение расходов

Для C++ не было ничего удобного 
для работы с IO-bound задачами

01 02



что было в мире 
на начало проекта

Senior разработчиков в мире мало

Другие языки влекут 
за собой увеличение расходов

Для C++ не было ничего удобного 
для работы с IO-bound задачами

01 02

03



что было в мире 
на начало проекта

Другие языки/фреймворки 
не решают проблемы productionSenior разработчиков в мире мало

Другие языки влекут 
за собой увеличение расходов

Для C++ не было ничего удобного 
для работы с IO-bound задачами

01 02

03 04



C++, простота, 
production-oriented





как?
01



New Thread OS

receive();

process(data);

send(data);

Destroy thread



Thread OS

accept(listener);

accept(listener);

receive(new_socket);

process(data1);

send(new_socket, data1);

accept(listener);

receive(new_socket2);



void View::Handle(Request&& request, const Dependencies& dependencies, Response
response) {
dependencies.pg->GetCluster(
[request = std::move(request), response](auto cluster)

{
cluster->Begin(storages::postgres::ClusterHostType::kMaster,
[request = std::move(request), response](auto& trx)

{
const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
psql::Execute(trx, statement, request.id,
[request = std::move(request), response, trx = std::move(trx)](auto& res)

{
auto row = res[0];
if (!row["ok"].As<bool>()) {
if (LogDebug()) {

callback hell



GetSomeInfoFromDb([id = request.id](auto info) {
LOG_DEBUG() << id << " is not OK of " << info;

});
}
*response = Response400{};

}
psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar,
[row = std::move(row), trx = std::move(trx), response]()

{
trx.Commit([row = std::move(row), response]() {
*response = Response200{row["baz"].As<std::string>()};

});
});

});
});

});
}

callback hell



});

}

callback hell



50-летняя идея



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = co_await dependencies.pg->GetCluster();
auto trx = co_await cluster->Begin(postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = (co_await psql::Execute(trx, statement, request.id))[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << co_await GetSomeInfoFromDb();
return Response400();

}

co_await psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
co_await trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackless



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = co_await dependencies.pg->GetCluster();
auto trx = co_await cluster->Begin(postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = (co_await psql::Execute(trx, statement, request.id))[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << co_await GetSomeInfoFromDb();
return Response400();

}

co_await psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
co_await trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackless



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = co_await dependencies.pg->GetCluster();
auto trx = co_await cluster->Begin(postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = (co_await psql::Execute(trx, statement, request.id))[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << co_await GetSomeInfoFromDb();
return Response400();

}

co_await psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
co_await trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackless



50-летняя идея
без поддержки 
компилятора



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = dependencies.pg->GetCluster();
auto trx = cluster->Begin(storages::postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = psql::Execute(trx, statement, request.id)[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << GetSomeInfoFromDb();
return Response400();

}

psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackfull



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = co_await dependencies.pg->GetCluster();
auto trx = co_await cluster->Begin(postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = (co_await psql::Execute(trx, statement, request.id))[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << co_await GetSomeInfoFromDb();
return Response400();

}

co_await psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
co_await trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackless



Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = dependencies.pg->GetCluster();
auto trx = cluster->Begin(storages::postgres::ClusterHostType::kMaster);

const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = psql::Execute(trx, statement, request.id)[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << GetSomeInfoFromDb();
return Response400();

}

psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
trx.Commit();

return Response200{row["baz"].As<std::string>()};
}

coroutines stackfull



GC?



garbage
collector

}



userver::rcu::Variable<T>garbage
collector



reflection 
or codegen?



userver_add_sql_library(
${PROJECT_NAME}_sql
NAMESPACE real_medium
OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}
SQL_FILES src/db/*.sql

)

file(GLOB_RECURSE SCHEMAS ${CMAKE_CURRENT_SOURCE_DIR}/docs/*.yaml)
userver_target_generate_chaotic(${PROJECT_NAME}-chgen

LAYOUT "/components/schemas/([^/]*)/=real_medium::handlers::{0}"
GENERATE_SERIALIZERS
OUTPUT_DIR ${CMAKE_CURRENT_BINARY_DIR}/src
SCHEMAS ${SCHEMAS}
RELATIVE_TO ${CMAKE_CURRENT_SOURCE_DIR}

)

reflection or codegen



#include <boost/pfr/core.hpp>

struct sample {
char c;
float f;

};

sample var{};
boost::pfr::get<1>(var) = 42.01f;
boost::pfr::get<char>(var) = 'A';

std::cout << var.c << var.f; // A 42.01

reflection or codegen



что мы ещё 
добавили

01 Асинхронное логирование



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты

06 Документация



что мы ещё 
добавили

01 Асинхронное логирование

02 Метрики

03 Примитивы синхронизаций

04 Драйвера баз данных

05 Юнит тесты

06 Документация

07 Отладочные скрипты



userver



почти Go



достаточно ли этого 
для прода?



делаем троллейбус 
«блестящим»



01 Теневые реплики

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

что мы ещё 
добавили



что мы ещё 
добавили

01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи
что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи

06 Консистентность по логам, 
трейсам и метрикам

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи

06 Консистентность по логам, 
трейсам и метрикам

07 Исключения :)

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи

06 Консистентность по логам, 
трейсам и метрикам

07 Исключения :)

08 Congestion Control

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи

06 Консистентность по логам, 
трейсам и метрикам

07 Исключения :)

08 Congestion Control

09 Оптимизации!

что мы ещё 
добавили



01 Теневые реплики

02 Динамические конфиги

03 Функциональные тесты

04 Deadline Propagation

05 Таймауты и ретраи

06 Консистентность по логам, 
трейсам и метрикам

07 Исключения :)

08 Congestion Control

09 Оптимизации!

10 Инструменты профилирования

что мы ещё 
добавили



выводы



текст вывода
в одну или

несколько строк



Яндекс Techplatformmeetup

Эксперт разработчик C++

Антон
Полухин

готов ответить 
на вопросы


