C++4+26 n3 CeHT-Jlync

[TonyxmH AHTOH

PykoBoaunTenb rpynnbl Obwmnx
KOMMOHEHT,

| | JkcnepT-pa3paboTynk C++

f

CopoeprxaHue

S U1 B~ W N

. delete incomplete;
. If (auto [a, b] = x)

. std::optional::begin
. iInplace_vector

. std::print é‘(:}
. Philox

C++ Zero Cost Conf

/. std::execution
8. —---
9. auto [X...] = tuple;

10. Reflection

delete Incomplete;

COMPILER - - B N))
EXPLORER Add...~ More~ Templates Share ¥ Policies@@~ Other

& g X
C++ source #1 D Output of x86-64 clang 18.1.0 (Compiler #2) A 4 D x
A~ B +~- v & 9 A~ Owraplines = Selectall
G C++ - <source>:4:5: warning: deleting pointer to incompleil
. 4 | delete p;
1 class Incomplete; == | A _
2
: <source>:1:7: note: forward declaration of 'Incomple
3 void foo(Incomplete* p) { i P
4 delete p: 1 | class Incomplete;
5 1 | "

1 warning generated.
Compiler returned: 0

Iif (auto [a, b] = foo())

Iif (auto [a, b] = foo())

if (auto [to, ec] = std::to_chars(p, last, 42))

Q C++ Zero Cost Conf

Iif (auto [a, b] = foo())

if (auto [to, ec] = std::to_chars(p, last, 42)) // to _chars result::operator bool()

@ C++ Zero Cost Conf

Iif (auto [a, b] = foo())

if (auto [to, ec] = std::to_chars(p, last, 42))
{

auto s = std::string_view(p, to);
assert(s == "42");
/] ...

}

@ C++ Zero Cost Conf

std::optional::beqgin

std::optional::beqgin

struct Phones {

[* ... */

std: :optional<std::string> get _vendor_optional() const;

I¥

@ C++ Zero Cost Conf

10

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

11

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

12

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

13

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get_vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

14

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

15

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

16

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

17

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

18

std::optional::beqgin

struct Phones {
[* ... %/
std: :optional<std::string> get _vendor_optional() const;

I¥

auto phone_vendors = phones
| std::views::transform(&Phone::get _vendor_optional)

| std::views::join
| std::ranges::to<std::unordered_set>()

@ C++ Zero Cost Conf

19

std::inplace vector

std::inplace vector

std::inplace_vector<int, 1024> integers;
integers.push_back(42);

Q C++ Zero Cost Conf

21

std::inplace vector

template<class... Args>
constexpr pointer try_emplace_back(Args&&... args);

constexpr pointer try_push_back(const T& x);
constexpr pointer try_push_back(T&& x);

template<container-compatible-range<T> R>
constexpr ranges::borrowed_iterator_t<R> try_append_range(R&& rg);

9 C++ Zero Cost Conf

22

std::inplace vector

template<class... Args>
constexpr reference unchecked_emplace_back(Argsg&s&...

constexpr reference unchecked_push_back(const T& x);

constexpr reference unchecked_push_back(T&& x);

@ C++ Zero Cost Conf

args);

23

std::print

std::print

template<> inline constexpr bool
enable_nonlocking formatter_optimization<T> = true;

Q C++ Zero Cost Conf

std::print

template<> inline constexpr bool
enable_nonlocking formatter_optimization<T> = true;

template<class... Args>

void print(FILE* stream, format_string<Args...> fmt, Args&s&...

Q C++ Zero Cost Conf

args);

26

Philox

C++ Zero Cost Conf

27

Philox

* Metoa MoHTe-Kapso

Q C++ Zero Cost Conf

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

29

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

C++ Zero Cost Conf

30

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

31

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

32

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

33

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

34

Philox

uint32_t global seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_1id){
std: :philox4x32 eng(global_seed);
eng.set_counter({atom_1id, time_step, 0, 0});
std::normal_distribution nd;
auto nl1 = nd(eng);
auto n2 = nd(eng);

/] ...

@ C++ Zero Cost Conf

35

std::execution

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

37

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

38

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

39

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

40

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

41

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
s
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

42

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

43

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
})s
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

@ C++ Zero Cost Conf

44

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

45

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

46

std::execution

using namespace std::execution;
auto sch = thread_pool.scheduler();

auto begin = schedule(sch);
auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
1)
auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

47

std::execution

using namespace std::execution;
scheduler auto sch = thread_pool.scheduler();

sender auto begin = schedule(sch);
sender auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
})s
sender auto add 42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

48

std::execution

using namespace std::execution;
scheduler auto sch = thread_pool.scheduler();

sender auto begin = schedule(sch);
sender auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
})s
sender auto add 42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

@ C++ Zero Cost Conf

49

std::execution

using namespace std::execution;
scheduler auto sch = thread_pool.scheduler();

sender auto begin = schedule(sch);
sender auto hi = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;
})s
sender auto add 42 = then(hi, [](int arg) { return arg + 42; });

auto [1] = this_thread::sync_wait(add_42).value();

Q C++ Zero Cost Conf

50

std::execution

sender_of<dynamic_buffer> auto async_read_array(auto handle) {
return just(dynamic_buffer{})
| let_value([handle] (dynamic_buffer& buf) {
return just(std::as_writeable bytes(std::span(&buf.size, 1)))
| async_read(handle)
| then(
[&buf] (std::size_t bytes read) {
buf.data = std::make_unique<std::byte[]>(buf.size);
return std::span(buf.data.get(), buf.size);
})
| async_read(handle)
| then(
[&buf] (std::size_t bytes read) {
return std::move(buf);
})s
})s

0 } C++ Zero Cost Conf

51

std—executton for

https://userver.tech

bnnxanwee byaylee

bnnxanwee byaylee

* Reflection

bnnxanwee byaylee

* Reflection
* auto [X...] = tuple;

bnnxanwee byaylee

* Reflection
* auto [X...] = tuple;
* Contracts

Cnacnbo 3a BHUMaHune!

[TonyxmH AHTOH

PykoBoaunTenb rpynnbl Obwmnx KoOMMNoOHEHT
IkcnepT-pa3paboTynk C++

y

	C++26 из Сент-Луис
	Содержание
	delete Incomplete;
	delete Incomplete; (2)
	if (auto [a, b] = foo())
	if (auto [a, b] = foo()) (2)
	if (auto [a, b] = foo()) (3)
	if (auto [a, b] = foo()) (4)
	std::optional::begin
	std::optional::begin (2)
	std::optional::begin (3)
	std::optional::begin (4)
	std::optional::begin (5)
	std::optional::begin (6)
	std::optional::begin (7)
	std::optional::begin (8)
	std::optional::begin (9)
	std::optional::begin (10)
	std::optional::begin (11)
	std::inplace_vector
	std::inplace_vector (2)
	std::inplace_vector (3)
	std::inplace_vector (4)
	std::print
	std::print (2)
	std::print (3)
	Philox
	Philox (2)
	Philox (3)
	Philox (4)
	Philox (5)
	Philox (6)
	Philox (7)
	Philox (8)
	Philox (9)
	std::execution
	std::execution (2)
	std::execution (3)
	std::execution (4)
	std::execution (5)
	std::execution (6)
	std::execution (7)
	std::execution (8)
	std::execution (9)
	std::execution (10)
	std::execution (11)
	std::execution (12)
	std::execution (13)
	std::execution (14)
	std::execution (15)
	std::execution (16)
	std::execution for BL
	Ближайшее будущее
	Ближайшее будущее (2)
	Ближайшее будущее (3)
	Ближайшее будущее (4)
	Спасибо за внимание!

