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delete Incomplete;
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delete Incomplete;
Здесь может располагаться текст
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if (auto [a, b] = foo())
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if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42))
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if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42)) // to_chars_result::operator bool()
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if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42))

{
    auto s = std::string_view(p, to);
    assert(s == "42");
    // ...
}
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std::optional::begin
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std::optional::begin
struct Phones {                        
    /* ... */                         
    std::optional<std::string> get_vendor_optional() const;   
};
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std::optional::begin
struct Phones {                        
    /* ... */                         
    std::optional<std::string> get_vendor_optional() const;   
};

auto phone_vendors = phones
  | std::views::transform(&Phone::get_vendor_optional)
  | std::views::join
  | std::ranges::to<std::unordered_set>()
;
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std::inplace_vector
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std::inplace_vector
    std::inplace_vector<int, 1024> integers;
    integers.push_back(42);
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std::inplace_vector
  template<class... Args>
  constexpr pointer try_emplace_back(Args&&... args);

  constexpr pointer try_push_back(const T& x);

  constexpr pointer try_push_back(T&& x);

  template<container-compatible-range<T> R>
  constexpr ranges::borrowed_iterator_t<R> try_append_range(R&& rg);
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std::inplace_vector
  template<class... Args>
  constexpr reference unchecked_emplace_back(Args&&... args);

  constexpr reference unchecked_push_back(const T& x);

  constexpr reference unchecked_push_back(T&& x);
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std::print
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std::print
template<> inline constexpr bool 
enable_nonlocking_formatter_optimization<T> = true;
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std::print
template<> inline constexpr bool 
enable_nonlocking_formatter_optimization<T> = true;

template<class... Args>
void print(FILE* stream, format_string<Args...> fmt, Args&&... args);
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Philox
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Philox
 Метод Монте-Карло
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Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
  for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
    std::philox4x32 eng(global_seed);
    eng.set_counter({atom_id, time_step, 0, 0});
    std::normal_distribution nd;
    auto n1 = nd(eng);
    auto n2 = nd(eng);
    // ...
  }
}
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std::execution
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std::execution
  using namespace std::execution;
  
  auto sch = thread_pool.scheduler();                                           // 1
  
  auto begin = schedule(sch);                                                   // 2
  auto hi = then(begin, []{                                                     // 3
      std::cout << "Hello world! Have an int.";                                 // 3
      return 13;                                                                // 3
  });                                                                           // 3
  auto add_42 = then(hi, [](int arg) { return arg + 42; });                     // 4
  
  auto [i] = this_thread::sync_wait(add_42).value();                            // 5
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std::execution
  sender_of<dynamic_buffer> auto async_read_array(auto handle) {               
    return just(dynamic_buffer{})                                              
         | let_value([handle] (dynamic_buffer& buf) {                       
             return just(std::as_writeable_bytes(std::span(&buf.size, 1)))  
                  | async_read(handle)                                      
                  | then(                                                   
                      [&buf] (std::size_t bytes_read) {                     
                        buf.data = std::make_unique<std::byte[]>(buf.size); 
                        return std::span(buf.data.get(), buf.size);         
                      })
                  | async_read(handle)                                      
                  | then(
                      [&buf] (std::size_t bytes_read) {
                        return std::move(buf);                              
                      });
         });
  }



52C++ Zero Cost Conf

std::execution for BL

https://userver.tech
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Ближайшее будущее
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 Reflection
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Ближайшее будущее
 Reflection
 auto [x…] = tuple;
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Ближайшее будущее
 Reflection
 auto [x…] = tuple;
 Contracts
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