
C++26 из Сент-Луис
Полухин Антон

Руководитель группы Общих
Компонент,

Эксперт-разработчик C++

2

Содержание

C++ Zero Cost Conf

7. std::execution

8. ----

9. auto [x…] = tuple;

10. Reflection

1. delete incomplete;

2. if (auto [a, b] = x)

3. std::optional::begin

4. inplace_vector

5. std::print

6. Philox

3C++ Zero Cost Conf

delete Incomplete;

4C++ Zero Cost Conf

delete Incomplete;
Здесь может располагаться текст

5C++ Zero Cost Conf

if (auto [a, b] = foo())

6C++ Zero Cost Conf

if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42))

7C++ Zero Cost Conf

if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42)) // to_chars_result::operator bool()

8C++ Zero Cost Conf

if (auto [a, b] = foo())
if (auto [to, ec] = std::to_chars(p, last, 42))

{
 auto s = std::string_view(p, to);
 assert(s == "42");
 // ...
}

9C++ Zero Cost Conf

std::optional::begin

10C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

11C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

12C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

13C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

14C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

15C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

16C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

17C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

18C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

19C++ Zero Cost Conf

std::optional::begin
struct Phones {
 /* ... */
 std::optional<std::string> get_vendor_optional() const;
};

auto phone_vendors = phones
 | std::views::transform(&Phone::get_vendor_optional)
 | std::views::join
 | std::ranges::to<std::unordered_set>()
;

20C++ Zero Cost Conf

std::inplace_vector

21C++ Zero Cost Conf

std::inplace_vector
 std::inplace_vector<int, 1024> integers;
 integers.push_back(42);

22C++ Zero Cost Conf

std::inplace_vector
 template<class... Args>
 constexpr pointer try_emplace_back(Args&&... args);

 constexpr pointer try_push_back(const T& x);

 constexpr pointer try_push_back(T&& x);

 template<container-compatible-range<T> R>
 constexpr ranges::borrowed_iterator_t<R> try_append_range(R&& rg);

23C++ Zero Cost Conf

std::inplace_vector
 template<class... Args>
 constexpr reference unchecked_emplace_back(Args&&... args);

 constexpr reference unchecked_push_back(const T& x);

 constexpr reference unchecked_push_back(T&& x);

24C++ Zero Cost Conf

std::print

25C++ Zero Cost Conf

std::print
template<> inline constexpr bool
enable_nonlocking_formatter_optimization<T> = true;

26C++ Zero Cost Conf

std::print
template<> inline constexpr bool
enable_nonlocking_formatter_optimization<T> = true;

template<class... Args>
void print(FILE* stream, format_string<Args...> fmt, Args&&... args);

27C++ Zero Cost Conf

Philox

28C++ Zero Cost Conf

Philox
 Метод Монте-Карло

29C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

30C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

31C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

32C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

33C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

34C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

35C++ Zero Cost Conf

Philox
uint32_t global_seed = 999;
for(uint32_t time_step = 0; time_step < time_steps_num; ++time_step){
 for(uint32_t atom_id = 0; atom_id < atoms_num; ++atom_id){
 std::philox4x32 eng(global_seed);
 eng.set_counter({atom_id, time_step, 0, 0});
 std::normal_distribution nd;
 auto n1 = nd(eng);
 auto n2 = nd(eng);
 // ...
 }
}

36C++ Zero Cost Conf

std::execution

37C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

38C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

39C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

40C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

41C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

42C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

43C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

44C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

45C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

46C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

47C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 auto sch = thread_pool.scheduler(); // 1

 auto begin = schedule(sch); // 2
 auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

48C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 scheduler auto sch = thread_pool.scheduler(); // 1

 sender auto begin = schedule(sch); // 2
 sender auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 sender auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

49C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 scheduler auto sch = thread_pool.scheduler(); // 1

 sender auto begin = schedule(sch); // 2
 sender auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 sender auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

50C++ Zero Cost Conf

std::execution
 using namespace std::execution;

 scheduler auto sch = thread_pool.scheduler(); // 1

 sender auto begin = schedule(sch); // 2
 sender auto hi = then(begin, []{ // 3
 std::cout << "Hello world! Have an int."; // 3
 return 13; // 3
 }); // 3
 sender auto add_42 = then(hi, [](int arg) { return arg + 42; }); // 4

 auto [i] = this_thread::sync_wait(add_42).value(); // 5

51C++ Zero Cost Conf

std::execution
 sender_of<dynamic_buffer> auto async_read_array(auto handle) {
 return just(dynamic_buffer{})
 | let_value([handle] (dynamic_buffer& buf) {
 return just(std::as_writeable_bytes(std::span(&buf.size, 1)))
 | async_read(handle)
 | then(
 [&buf] (std::size_t bytes_read) {
 buf.data = std::make_unique<std::byte[]>(buf.size);
 return std::span(buf.data.get(), buf.size);
 })
 | async_read(handle)
 | then(
 [&buf] (std::size_t bytes_read) {
 return std::move(buf);
 });
 });
 }

52C++ Zero Cost Conf

std::execution for BL

https://userver.tech

53C++ Zero Cost Conf

Ближайшее будущее

54C++ Zero Cost Conf

Ближайшее будущее
 Reflection

55C++ Zero Cost Conf

Ближайшее будущее
 Reflection
 auto [x…] = tuple;

56C++ Zero Cost Conf

Ближайшее будущее
 Reflection
 auto [x…] = tuple;
 Contracts

Спасибо за внимание!
Полухин Антон
Руководитель группы Общих Компонент
Эксперт-разработчик C++

	C++26 из Сент-Луис
	Содержание
	delete Incomplete;
	delete Incomplete; (2)
	if (auto [a, b] = foo())
	if (auto [a, b] = foo()) (2)
	if (auto [a, b] = foo()) (3)
	if (auto [a, b] = foo()) (4)
	std::optional::begin
	std::optional::begin (2)
	std::optional::begin (3)
	std::optional::begin (4)
	std::optional::begin (5)
	std::optional::begin (6)
	std::optional::begin (7)
	std::optional::begin (8)
	std::optional::begin (9)
	std::optional::begin (10)
	std::optional::begin (11)
	std::inplace_vector
	std::inplace_vector (2)
	std::inplace_vector (3)
	std::inplace_vector (4)
	std::print
	std::print (2)
	std::print (3)
	Philox
	Philox (2)
	Philox (3)
	Philox (4)
	Philox (5)
	Philox (6)
	Philox (7)
	Philox (8)
	Philox (9)
	std::execution
	std::execution (2)
	std::execution (3)
	std::execution (4)
	std::execution (5)
	std::execution (6)
	std::execution (7)
	std::execution (8)
	std::execution (9)
	std::execution (10)
	std::execution (11)
	std::execution (12)
	std::execution (13)
	std::execution (14)
	std::execution (15)
	std::execution (16)
	std::execution for BL
	Ближайшее будущее
	Ближайшее будущее (2)
	Ближайшее будущее (3)
	Ближайшее будущее (4)
	Спасибо за внимание!

